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Outline

# Sparse learning
a Sparse learning on vectors
o Sparse learning on matrices

a Dictionary learning




Two Important Aspects

# Model goodness:

o Often defined in terms of prediction accuracy

# Model parsimony:

o Simpler models are preferred for the sake of scientific insight

into the x — y relationship




Example — diabetes study

# 442 diabetes patients were measured on 10 baseline variables; a prediction
model was desired for the response variable, a measure of disease progression
one year after baseline

AGE SEX BMI BP Serum measurements Response
Patient Xq X5 X3 X4 X5 X6 X7 Xg X9 Xjp y

1 59 2 32.1 101 157 932 38 4 49 87 151
2 48 1 21.6 g7 183 1032 70 3 39 69 75
3 72 2 30.5 93 156 93.6 41 4 47 &5 141
4 24 1 253 84 198 1314 40 5 49 &9 206
5 50 1 23.0 101 192 1254 52 4 43 80 135
6 23 1 22.6 89 139 648 61 2 42 68 97

441 36 1 30.0 95 201 1252 42 5 51 &5 220

442 36 1 19.6 71 250 1332 97 3 46 92

# Two hopes:

o Accurate prediction

o Understand important factors




Supervised Learning and Regularization

# Data
SCZ'EX, yzEy, i:1,2,...,n

# Minimize with respect to function f : X' — Y
A
D U f@)w) + SIS

Error on data + Regularization

# Two theoretical / algorithmic issues

o Loss

o Function space/norm




Usual Losses
# Regression: ¥ € R, prediction ¢ = f(z)

o quadratic cost is 1 5 1

E(yaf):§(y—3?) :g(y—fy

# Classification:
y € {1, —1}, prediction ¢ = sign(f(x))

. °
a loss of the form E(y) f) — é(yf) ° . .
_ o ® ®
o true loss E(yf) — 5(yf<0) e,
W N \M'\-\. )
a useful convexloss .~ 9N ® e e
— o O o A 0 o *
al — hinge 1 TN
square 0 o s:,xh
3 logistic | O "




Regularization
# Main goal: Avoid over-fitting

# Two main lines of work

o Euclidean and Hilbertian norms (i.e., ¢, -norms)
Possibility of non linear predictors

Non parametric supervised learning and kernel methods

Well developed theory and algorithms (see, e.g., Wahba, 1990; Shawe-
Taylor and Cristianini, 2004)

o Sparsity—inducing norms

Usually restricted to linear predictors on vectors f ( gj) — wT T

p
Jwlly =) |wi]
i=1

Perform model selection as well as regularization

Main example: ¢-norm

Theory and algorithrns “in the making”




Sparse Linear Estimation with ¢;-norm
# The general setting f: X — )




Why ¢ -norm leads to sparsity?

@ Example 1: quadratic problem in 1D

1 o
minixz—xy—l—)\p:\ = -

# Piecewise quadratic function with a kink at zero

o Derivative at O,: g, = —y + A

o Derivativeat 0 : g_ = —y — A
0z =0 isthesolutioniff ¢, >0, g_ <0 (i.e.: |y] < A)

0 x>0 isthesolutioniff gy <0 (ie:y>A) 2* =y — )\

a <0 is the solution iff g— >0 (i-e-i y < —>\) rt =y -+ A

@ Solution is: r* = Slgn(y)“y‘ — )\)+ Soft Thresholding

/




Why ¢ -norm leads to sparsity?

@ Example 1: quadratic problem in 1D

1
min 5:132 — xy + Az

# Piecewise quadratic function with a kink at zero

& Solution 1S: Soft Thresholding
x" = sign(y)(ly] — M)+
A X




Why /1 -norm leads to sparsity?

@ Example 2: minimize quadratic function Q(w) subject to
Jwly <T

# (GGeometric Interpretation

0 Penalizing is “equivalent” to constraining (HW: proot?)




Sparse Linear Estimation with ¢;-norm

# Data: covariates x; € R” [response y; € Y, 1 =1,2,...n

4 Minimize over loadings/weights w € R?
J(w) = Ly, w'az) +  Muwl
i=1

# Square loss
a Basis pursuit in signal processing (Chen et al., 1998)

o Lasso in statistics/machine learning (Tibshirani, 1996)




LASSO

# a loop of rope that is demgned to be thrown around a

WIKIPEDIA

La enciclopedia libre

target and tlghten when pulled. It is a well-known tool

of the American cowboy.




Revisit the Diabetes Study

# Lasso: least absolute shrinkage and selection operator

mui)nL(y, w' X) = Z(yz —w'x;)?

7
s.t. ||lw|lr <t
8 -
Y]
(V.
\ g - \\
& N el .
Robert Tibshirani : o 20,00 o

Dept. Stat., Stanford U.




Nonsmooth convex analysis & optimization

& Analysis
= optimal conditions
& Optimization

0 algorithms




Optimal conditions for smooth opt.
— Zero gradient

@k le: A
Xample mmJ ZZ Ui, W' ;) §HwH§

di
@ gradient ZV yz,w T;)T; + Aw

a If squared loss - ,
(i) = 2y — Xl

VJ(w) = -X"(y — Xw) + \w

gradient

solution
w=MN+X"X)'X"y

# But ¢, -norm is non-differentiable

o Can’t compute the gradient => subgradient (directional

derivatives)




Directional Derivatives
& Directional derivative in direction /A at W :

VJ(w,A) = lim J(w+ted) - J(w)

6—)0+ €

o Rate of change moving through w at the Velocity specified by A
0 Always exist when J is convex and continuous

# Main idea: in non-smooth settings, may need to look at all

directions \

.,-o-""'"-.-

-

# Proposition: ] is differentiable at w iff A — VJ(w, A) is linear

VJ(w,A) =VJ(w) A




Optimal conditions for convex functions

# Unconstrained minimization

0 Proposition: w 1S optimal iff

VA eRP: VJ(w,A) >0

0 i.e., function value goes up in all directions

# Reduces to zero- gradient for smooth problems?




Directional derivative for ¢.-norm
# Function

=) Uy w ;) + Mwlly = Ly, Xw) + AJw||;

& ({-norm:

Jw+ el —[lwli = ) (Jw; + el —ws]) + Y |ed

.77“{7#0 J wj—

# Thus (separability of optimal conditions)

VJ(w,A) = VL(w)TA+X Y sign(w;)A; + X > |A]

J,w;j7#0 7,w;=0

= ) (VL(w); + dsign(w))A; + > (VL(w);A; + AA])

j,wﬁéO j,wj:O

/




Directional derivative for ¢, -norm
# General loss: wis optimal iffforally) = 1,2,...,p

w; #0 = VL(w); + Asign(w;) =0

& Squared loss:
Ly, Xw) = ! E (y; —w'xz;)?
2

1

VL(w); = —XjT(y — Xw)

a X ; is the j-th column of X




e
First-order methods for convex opt.

— smooth optimization

# Gradient descent:
Wil — Wy — OétVJ(wt)
o with line search: search for a descent &

o with fixed step size, e.g., o, = a(t + b)—l

# Convergence of f(w;) to f*(w) = min f(w)
a Depends on the condition number of the optimization number

(i.e., correlation within variables)

# Coordinate descent:

o Similar properties




Regularized problems — proximal methods

# QGradient descent as a proximal method

W1 = argmax L(wy) + (w — wt)TVL(wt)JrgHw — w5

1
= wy — —V L(w)
i

# Regularized problems of the form  min L(w)+AQ(w)
Wi = argmax L(w;) + (w — wt)TVL(wt)+)\Q(w)+gHw — w5
1
= SoftThreshold(w; — —V L(wy))
[

# Similar convergence rates as sooth optimization

o Acceleration methods (Nestrov, 2007; Beck & Teboulle, 2009)




More on Proximal Mapping

# The proximal mapping (or proximal operator) of a

convex function h is

, 1
pros, (x) = argmin(h(u) + 5 |u — /3
# Examples:
a h(z)=0: prox,(z)==x

a2 h(z) = Ic(z) (indicator function of C): a projection on C

prox,,(z) = Po(x) = argmin [|u — |3
ped

0 h(z) = t||z||; : a shrinkage (soft-threshold) operation

r; — t X; Z t /
prox; (x); = 0 x| <t i L
bt @<t /




More on Proximal Gradient Methods

# Unconstrained problem with cost function split in two

parts
min f(z) = g(z) + h(z)

a g is convex, differentiable

a h closed, convex, possibly nondifferentiable; prox,, is

inexpensive

# Proximal gradient algorithm:

k) — prox, (x(k) — thg(a:(k)))

a 1k is step size, constant or determined by line search




More on Proximal Gradient Methods
kD) — prox, j, (x(k) — thg(;r;(k)))

# From definition of proximal operator

: 1
o4 = axgmin (1) + golln = + 699 ) )
: 1
— ats (h(ﬂ) + gz + Vg™ T (n— 2™ + T = x(k)”%)

0 i.e., minimizes h(y) plus a simple quadratic local model of g (1)

around z(%)




Examples
mmin g(x) + h(z)

# Gradient method: h(z) =0
2D Z ) (R
# Gradient projection method: h(z) = Io(z)
24— P20 1g(a)

# Iterative soft-thresholding: h(z) = t||z|;

k1) — prox,, j (ac(k) — thg(sc(k)))

T, —t x;>1 -
prox; (x); = 0 ;| <t /
T, +t x; < —t




T) -Trick for ¢;-norm

# Variational form of the ¢, -norm

1 [w?
Juwlly = min o > (S5 +,)
n=>0 2 1 1);

# Alternating minimization
o For ) , closed-form solution 7; = |wj|

a For w, weighted squared /¢, -norm regularized problem

a Caveat: lack of continuity around (wi, m;) = (0,0)




QP Formulation

# For the special case with square loss

1
min = [y — Xw||3 4+ Aljwl|y
w2

_|_

0 is equivalent to (w =w™ —w™ )

p
min ly — X(wt — w3+ A (]

wt,w—

st wt > 0, w >0

o generic toolboxes apply, but normally very slow!




Piecewise linear solution paths

Lasso: .1
¢ min ~ly — X3 + Aw];

-0.2r
_0_4/
-0.6

0 01 02 03 04 05 06
regularization parameter




More on Piecewise Linearity

# The general regularized loss minimization problern

ZE (xi;w),y;)  +  Qw)

# Piecewise linearity:
D If N =0< A <+ <A\ =00, and 7y, € R?
o S.t: w* ()\) — w*()\k) + ()\ — )\k)’yk, for Ay < A< Ay

# Sufficient conditions for piecewise linearity
ST quadratic or piecewise quadratic as a function of w

o Qs piecewise linear in w

[Rosset and Zhu: Piecewise Linear Regularized Solution Paths, Annals of Stats., 2007]

/




e

log(relative distance to optimum)

Comparison on Algorithms for Lasso
n = 2000, p = 10,000

y%]

-A-CF'I

-2 -1 0 1 2
log(CPU time) in seconds

(a) corr: low, reg: low

& SG: sub—gradient descent
# Ista: simple proximal methods
# Fista: accelerated version of Ista

& Re-L2: reweighted—least square

M2
T

log(relative distance to optimum)

H = Fista

—SG

-0~ Ista
Re-L2

1=#=CD

---Lars
-&-CP

1

(b)

0 1 2
log(CPU time) in seconds

corr: low, reg: high

# CP: cone programming

& QP: quadratic programming

# Lars: least angle regression
# CD: coordinate descent




Alternative sparse methods
— Greedy methods

# Forward selection

# Forward-backward selection

# Non-convex method
o Harder to analyze
0 Simpler to implement

o Problems of stability

# Positive theoretical results (Zhang, 2009, 2008a)

o Similar sufficient conditions as for the Lasso




Simulation results

# i.i.d. Gaussian design matrix, k = 4,n = 64, p € [2, 256],
SNR =1

# Note stability to non-sparsity and Variability

o9t |—L1 . 0.9 [—L1 !
—0L2 —L2
0.8 |—greedy | 0.8 greedy
07 —oracle 07
<) o)
c0.6f £ 0.6} /
© ©
T 0.5 © 0.5y
4 4
C G4' — E"’-i-'
8 i
E 0.3} E 0.3}
0.2t 0.2k
0.1+ 0.1k
ok ol :
2 8

4 [
l0g,(p)

Rotated (non sparse)




Summary -- ¢,-norm Regularization

# Leads to non-smooth optimization
0 analysis through directional derivatives or subgradients

0 optimization may or may not take advantage of sparsity
# Allows high—dimensional inference

# Interesting problems:
a Stable variable selection
o Weaker sufficient conditions (for weaker results)

o Estimation of regularization parameter (all bounds depend on
the unknown noise variance 62)




Extensions

# Sparse methods are not limited to the square loss

a logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van
De Geer, 2008; Bach, 2009)

# Sparse methods are not limited to supervised learning

o Learning the structure of Gaussian graphical models (Meinshausen
and Buhlmann, 2006; Banerjee et al., 2008)

0 Sparsity on matrices

4 Sparse methods are not limited to variable selection in a linear
model

o Kernel learning (Bach et al., 2008)




Extensions

# {, norm

{oo ball
— {» ball
--f1 b

€273

Pal

-1

:
:
:
*
!
|
|
|
|

h-=na 5u na




Regularization with Groups of Variables
# Assume {1, 2, ...p}is partitioned into m groups G, G, ... G,

& Regularization:

2

Qw) =Y g,

# Induces groupwise sparsity
o Some groups entirely set to zero

o No zeros within group




Regularization with Groups of Variables




Group Lasso
¢ Opt. problem:

min Z(yz —w' ;) Di
# Optimal condition?
o Proposition: wis optimal iff Vj = 1,2,....m
AP Wa,
wa, # 0 j—X(T;j(y—X’w) F{Uz > =0

wg; =0 = [ Xg, (y — Xw)|> < A\/B;

o Pj is the number of features in group j.

# Coordinate descent algorithm can be used to solve it.




Sparse Group Lasso
# Opt. Problem:

H}})HZ(% —w'x;)? + /\i |we,
i i—1

o the single group case:

2+ y|[wlx

o |
0 |
o
w2 O | \‘.Z
S /| ___——lLasso
) g __— Sparse Group Lasso
‘:)' —
| —— Group Lasso
e e
S | | | |




Sparsity for Matrices




e
Learning on Matrices

— Collaborative Filtering

# Given N movies and M customers
# Predict the rating of customer i for movie j

& Training data: N x M incomplete matrix that describes the

known ratings of some customers for some movies

# Goal: complete the matrix

F

--:
-_-




Learning on Matrices
— Multivariate Regression/Classification

# Multivariate linear regression

Y | _ X W
nxK nxp pxK nxK
K-varate design noise
output matrix coefficient
matrix

# Multiclass linear classification
mlnz —l(w| xq, ..., WL, Ya)

o where y4 € {0, 1}K and ¢ is the loss, e.g., logistic loss




Learning with Matrices
— Multi-task Learning

# K prediction tasks on the same covariates x € RP

o Each model parameterized by w;, € RP

ng z7yz

o All the parameters form a matrix

o Empirical risks:

Wy Wik
W =lwy,...,wg| = wl =
wy Wy

4 Many applications:

o Multi-category classification (one task per class)




Example — Image Denoising

& Simultaneously denoise all patches of a given image

# Example from Mairal et al. (2009)




Two types of sparsity of matrices

¢ Type 1 of sparsity:

0 Directly on the elements

M

Many elements are zeros

M
| |

Many TrOws Oor columns arc Z€ros

/




Two types of sparsity of matrices

# Type 2 of sparsity:
o Through a factorization M = Uy’ UeRY™™ Ve RP™

o Low-rank sparsity: m is small

VT

M |=U

o Sparse decomposition: U sparse

M |="U A




Type 1: Joint Variable Selection in MTL

# Parameters for all the K tasks

ZU% UJ}( w1
p p p
_w1 ’LUK_ _w |

# Select all variables that are relevant to at least one task
i — S (w2 oy (W
mml/n;nk; k<wkx17yz) ( ) 1

a which regularizer?

QW) = llwll;




Type 2: Rank constraints and sparsity of
the spectrum
# Given a matrix )}/ € R"*P

a Singular value decomposition (SVD): M = U diag()\)VT

where [ and /" are orthogonal matrices; A\ € R"" are eigenvalues

o The rank of M is:
rank(M) = || Ao

2 Rank of M is the minimum size m of all factorizations M/ — UV "
where U € R™™, V ¢ RP*™

# Rank constrained learning

min L(W) s.t.: rank(W) <m
W EeRn <P




| ow-rank via Factorization

# Reduced-rank multivariate regression

min ||Y — XW/|% s.t.: rank(W) <m
W EeRn P

o0 Well studied (Anderson, 1951; Izenman, 1975; Reinsel and Velu,
1998)

a Is solved directly using the SVD (by OLS + SVD + projection)

# General formulation

min LUV
UERnXm‘VERpXTn

o Still non-convex but convex w.r.t. U andV separately

o Optimization by alternating procedures




Trace-norm Relaxation
& With SVD M = Udiag(\)V" rank(M) = ||A|lo

a 0-norm can be relaxed by 1-norm A1

a This is the trace norm, denoted by HMHtr — H)\H 1

# Trace-norm regularized learning

min  L(W) + A||W ||
W eRnXP

o Convex problem

a Can be solved with: proximal methods; Iterative re-weighted

Least-squares; etc




Trace-norm and Collaborative Filtering

# CF as matrix completion (users as rows; items as columns)

0

Y =

# Find a low-rank matrix to reconstruct noisy observations

i Xii — Yii)? 4+ M| X er
min _Z( j i) AX s
(2,j)€S

o Semi-definite program (Fazel et al., 2001)
o Max-margin approaches to CF (Srebro et al., 2005)

o Hish-dimensional inference fro noisy matrix completion (Srebro et al.
g y P ’

2005; Candes & Plan, 2009)

o May recover entire matrix from slightly more entries than the
minimum of the two dimensions




Graphical Lasso

# aka: sparse Inverse covariance estimation

# Gaussian graphical models
o A set of random variables Xi, - -, Xn

a The joint distribution is multivariate Gaussian

p(x) = N(u, X)

# Proposition (sparse structure):
o If the ij-th element of X" is zero, then X; and Xj are

conditionally independent, i.e., no direct edge




Gaussian Random Fields
# An example

1 6 00O 010 015 -013 -008 015
6 2 7 00 015 -003 002 001 -003
>'={0 7 3 80 *=(-013 002 010 007 -012
O 08 409 -008 001 007 -004 007
O 00 95 015 -003 -012 007 0.08

21';=0«=}X1J_X5
—
X, 1lX,=Z2,.=0

X

nbrs(1)or nbrs(5)




Another example

(* * ok ok *O\ L2 3

* % % *x % 0
| * = %= 0 0O 3311’3% f L4
Q= * *+ 0 x 00

* x 0 0 % O \Q

\0 0 0 00 * ) r6 O

# How to estimate this MRF?
# What ifp >>n?
o MLE doesn’t exist in general!

o What about only learning a “sparse” graphical model?
This is possible when s=o(n)
Very often it is the structure of the GM that is more interesting ...




Graphical Lasso

# aka: sparse Inverse covariance estimation

# Sparse learning problem:

alet @ =x1

min —log p(X|0) + Al|O]s

# Various algorithms:
a Banerjee et al. (2007): block coordinate descent
0 Friedman et al. (2008): graphical lasso

D e o o




Sparse Learning of General Graphs
# Local methods

a Sparse-norm regularized logistic regression + aggregation

o See (Wainwright et al., 2006)

# Global methods
o Sparse-norm regularized MLE

a See (Lee et al., 2006; Zhu et al., 2010; etc. )

Wainwright et al: High—Dimensional Graphical Model Selection Using El—Regularized Logistic Regression
Lee et al: Efficient structure learning of Markov networks using El—regularization
kZhu et al: Grafting-Light: Fast, Incremental Feature Selection and Structure Learning of MRFs /




Graphical Regression

Neighborhood selection




Graphical Regression




Graphical Regression

=y




Consistency

# Theorem: for the graphical regression algorithm, under

certain verifiable conditions (omitted here for simplicity):

P [c";'(;\,,) £ (:} — O (exp (=Cnf)) = 0




Dictionary Learning




Learning with pre-defined basis functions
-- generalized linear models

# A mapping function
¢: X - RY

# Doing linear regression in the mapped space

........... ® o
- . @]

& o

3 > o ® *
I e} O o
i ® o ®

® o
., o o & °
®
@]
--------- ® o]

™~




Fixed Basis Functions

# Given a set of basis functions {¢s(x)}L,

6(x) = [¢1(x) - P (x)]"

m) Eg 1:

onl)  exp (- 1ol

272
0 E.g. 2:




Dictionary Learning
# Goal:

o learn the basis functions from data




Parametric Basis Functions

# Neural networks to learn a parameterized mapping function

# E.g., a two- layer feedforward neural networks

—tanh(thz xz+wh0> ________ o

Z w(2) + w(()z) )

Output Units

/ Q (O (O Hidden Units
NNy

O O O O O O Input Units

[Figure by Nedy




PCA: minimum error formulation

# A set of complete orthonormal basis
(Y, i=1,...,D

wi g = 0

# We consider a low-dimensional approximation

Xn = Z Zni i + Z bzﬂl?,

1=M+1

# The best approximation is to minimize the error

N
= LN [ — Rl
— X7 n - n
anl




Issues with PCA

# Principal components calculated on 8x8 image patches

B A% D0 A
i D= S 0
IH!EHH%E

m g
» B

* PCA capture linear pairwise
statistics
¢ Suitable for Gaussian distributed

data

* Not localized

* Not resemble cortical receptive
fields

* Not suitable for images with

high order statistics

[Olshausen & Field, Nature 1996y




Sparse Coding

# Basic assumption 1: a linear superposition model

I(.’L‘,y) — Zaz¢%(xvy)
AN

an image basis function

# Basic assumption 2: nature images have “sparse structure’
(similar as minimum-entropy code)
0.4 \
[
0
0.1

=1 0.2
0

\ 0 ) [Olshausen & Field, Nature 1996y




Sparse Coding

# Search for a sparse code is an optimization problem:
2

min {I($7y) o Zang@(x,y)} + ¢<&)

o, ¢
T,y

o the L1-norm is a common choice

# Solve the problems — alternating minimization
a For each image, solve for « as a sparse learning problem

o Update dictionary using gradient descent

[Olshausen & Field, Nature 1996y




Sparse Coding

# Basis learned on 16 x 16 natural scene image patches

& | Ll 4 DL RLAd IN=ETL
;., \
AEAERYEJEEERET B
" Localized NESNEHURRE=ZNZERES R
e NERPZZIN TN EZEN
* Selective to spatial
AL VYUY EELL
T 2 O D T S N
EENERNZAZEEENRSEmE
7
HFEEEREPERELIEREEN
BRSNS ZETRSWEHENE
MERFZENMIERER S =N
4 :

[Olshausen & Field, Nature 1996y

scales




Nonnegative Matrix Factorization

# Matrix factorization

min LUV X)
UERnXm‘VERpXm

= Example losses:

L= ZZ((UVT)M - Xi5)?

n p

L=Y Y (Xilog(UVT)y; — (UV "))

i=1 j=1

# Non-negativity loss:

[Lee & Seung, Nature 1999V




Original

S

-n.._-L_.

NMF

Jj_.ll-.lw._:_.l..ilu

# Sparse basis and sparse coefticients for images:

Nonnegative Matrix Factorization

[Lee & Seung, Nature 1999V

N

1= =




Nonnegative Matrix Factorization
& Eigenfaces and non-sparse coetficients by PCA

o Positive and negative combinations

[Lee & Seung, Nature 1999V




Nonnegative Matrix Factorization

# NMF for text documents with bag—of—word counts

X ~UV

ril1 T2 o+ X1D
To1 T2 -+ X2D
X =
IN1 IN2 " IND / nup
X1d | | | Vid
ng VQd,
Xg=| . A Ui Uz Uk X :
‘ I ) ek |
XNd VKd Kx1

# The same coefficient vector to reconstruct all word counts in

a document

/




Nonnegative Matrix Factorization

# NMF for text documents with bag—of—word counts

Encyclopedia entry:
'‘Constitution of the
United States'

court president
government | served
council governor
culture secretary
supreme senate
constitutional | congress
rights
justice
flowers disease
leaves behaviour
plant glands
perennial contact
flower symptoms
plants skin
growing pain
infection

president (148)
congress (124)
power (120)
united (104)
constitution (81)
amendment (71)

[Lee & Seung, Nature 1999V




docl

doc2

Topic Modeling — projection view

Dictionary Learning

The room was dirty and smelled awful. The wallpaper

was dirty and nasty. The hallway smelled awful as did the

water. The price was awful 100.00 to stay in such a dirty

room. Just awful. I would not recommend this hotel to an

Fantastic Hotel in beautiful Krabi. We felt pampered by

the gentle and Caring staff. The turndown service each

evening maintains the very high standard. A blissful sleep

in the most comfortable beds. The food is of a extremely

high quality with fantastic fresh and vibrant tastes.

 Topic 1)
oPicHl

dirty, bad, small, nasty, poor,

manager, called, rude, awful

' W Y

Gopic

—
7

great, good, gentle, beautiful,

lovely, fantastic, friendly, fresh,

&

Topical Projection

projection under

some measure

—PI‘T1 (V)

[ Probabilistic topic models:

o Topical subspace is a simplex

O Projection under KL—divergence




Probabilistic Topic Models — restrictions

# Ineffective in controlling posterior sparsity by using priors, e.g.,
Dirichlet prior in LDA (Zhu & Xing, UAI 2011):

q
0.9} —— Accuracy N
0 /> —5— Sparsity Ratio
weak smoothlng: — e ——t strong smoothmg:

sparse but worse

|

3 improved prediction,
S

predict accuracy 0.4l but non-sparse

10 10 107 10 10
alpha

# Restricted to MLE when considering supervised side information;

# Hard in inference due to a normalized likelihood model when
considering discrete side information (e.g., category labels or features)




Sparse Topical Coding (STC)

A Non—probabilistic Topic Model

4 'Topical bases: o |
Br € Pn 8= ( Bi1 Ba -+ BN )
KxN

I R
# Hierarchical coding:

o word code s — encode word counts under a loss:

g(wna Sn, 6) — 1ng<wn‘sn7 5)

where E,(,, s, )1 (wn)] = Sgﬁ.n we use Poisson distribution

o document code § — an aggregation of word codes

> lisn =013

nel
# Nonnegative hierarchical sparse coding (with dictionary learning)
min > CwanssinBa) + D (lIsan —0all3 + pllsan 1) + AZHedul
{san,0at.8
,nely d,ne€ly

N

s.t. : 61{; c PN) Vka 9d 2 07 \V/da Sdn Z 07 \V/dan = Id?
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Sparse Topical Coding (STC)

A Projection View

(unnormalized) KL-divergence for log—Poisson loss

W

d
Bog A

spa r;élKL-divergence
/ projection

/

./ %  spanned
convex cone

Projection is done under Regularization!
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Experiments:
Sparse Topical Coding

# Data Sets:
o 20 Newsgroups
o Documents from 20 categories
o ~ 20,000 documents in each group
o Remove stop word as listed in UMASS Mallet

[Zhu & Xing, UAI 2011; Zhang & Zhu, WWW2013]




Accuracy

Prediction Accuracy on 20Newsgroups
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# gaussSTC: uses L2-norm regularizor on word and doc codes
4 NMEFE: non—negative matrix factorization
# regLDA: LDA model using entropic regularizer on topic assignment distributions
# MedLDA: max-margin supervised LDA (Zhu et al., 2012)
@ DiscLDA: discriminative LDA (Simon et al., 2008)




Sparsity of Word Codes on 20Newsgroups

# Sparsity ratio: the percentage of zero elements on the word

codes

Sparsity Ratio
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Sparse Word Codes on 20Newsgroups
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