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Outline

Sparse learning

 Sparse learning on vectors

 Sparse learning on matrices

 Dictionary learning



Two Important Aspects

Model goodness:

 Often defined in terms of prediction accuracy

Model parsimony:

 Simpler models are preferred for the sake of scientific insight 

into the x – y relationship 



Example – diabetes study
442 diabetes patients were measured on 10 baseline variables; a prediction 
model was desired for the response variable, a measure of disease progression 
one year after baseline

Two hopes:
 Accurate prediction

 Understand important factors



Supervised Learning and Regularization

Data

Minimize with respect to function

Error on data           +     Regularization

Two theoretical/algorithmic issues

 Loss

 Function space/norm



Usual Losses

Regression:

 quadratic cost is

Classification:

 loss of the form

 true loss

 useful convex loss



Regularization

Main goal: Avoid over-fitting

Two main lines of work

 Euclidean and Hilbertian norms (i.e.,     -norms)
 Possibility of non linear predictors

 Non parametric supervised learning and kernel methods

 Well developed theory and algorithms (see, e.g., Wahba, 1990; Shawe-
Taylor and Cristianini, 2004)

 Sparsity-inducing norms
 Usually restricted to linear predictors on vectors

 Main example:      -norm

 Perform model selection as well as regularization

 Theory and algorithms “in the making”



Sparse Linear Estimation with     -norm

The general setting

Sparse linear estimation with     -norm



Why     -norm leads to sparsity? 

Example 1: quadratic problem in 1D

Piecewise quadratic function with a kink at zero

 Derivative at 0+: 

 Derivative at 0- : 

 is the solution iff

 is the solution iff

 is the solution iff

Solution is: Soft Thresholding



Why     -norm leads to sparsity? 

Example 1: quadratic problem in 1D

Piecewise quadratic function with a kink at zero

Solution is: Soft Thresholding



Why     -norm leads to sparsity? 

Example 2: minimize quadratic function            subject to 

Geometric Interpretation

 Penalizing is “equivalent” to constraining (HW: proof?)



Sparse Linear Estimation with     -norm

Data: covariates                , response 

Minimize over loadings/weights

Square loss

 Basis pursuit in signal processing (Chen et al., 1998)

 Lasso in statistics/machine learning (Tibshirani, 1996)



LASSO

a loop of rope that is designed to be thrown around a 

target and tighten when pulled. It is a well-known tool 

of the American cowboy. 



Revisit the Diabetes Study

Lasso: least absolute shrinkage and selection operator

Robert Tibshirani

Dept. Stat., Stanford U.



Nonsmooth convex analysis & optimization

Analysis

 optimal conditions

Optimization

 algorithms



Optimal conditions for smooth opt. 

– zero gradient

Example:  

 gradient

 If squared loss

 gradient

 solution 

But    -norm is non-differentiable

 Can’t compute the gradient => subgradient (directional 
derivatives)



Directional Derivatives

Directional derivative in direction      at      :

 Rate of change moving through w at the velocity specified by 

 Always exist when J is convex and continuous

Main idea: in non-smooth settings, may need to look at all 
directions 

Proposition: J is differentiable at iff is linear



Optimal conditions for convex functions

Unconstrained minimization

 Proposition: w is optimal iff

 i.e., function value goes up in all directions

Reduces to zero-gradient for smooth problems?



Directional derivative for      -norm

Function

-norm:

Thus  (separability of optimal conditions)



Directional derivative for      -norm

General loss: w is optimal iff for all 

Squared loss:

 is the j-th column of X



First-order methods for convex opt. 

– smooth optimization

Gradient descent:

 with line search: search for a descent

 with fixed step size, e.g., 

Convergence of             to

 Depends on the condition number of the optimization number 

(i.e., correlation within variables)

Coordinate descent:

 Similar properties



Regularized problems – proximal methods

Gradient descent as a proximal method

Regularized problems of the form

Similar convergence rates as sooth optimization

 Acceleration methods (Nestrov, 2007; Beck & Teboulle, 2009)



More on Proximal Mapping

The proximal mapping (or proximal operator) of a 

convex function h is

Examples:

 :

 (indicator function of C): a projection on C

 : a shrinkage (soft-threshold) operation



More on Proximal Gradient Methods

Unconstrained problem with cost function split in two 

parts

 g is convex, differentiable

 h closed, convex, possibly nondifferentiable;             is 

inexpensive

Proximal gradient algorithm:

 is step size, constant or determined by line search



More on Proximal Gradient Methods

From definition of proximal operator

 i.e., minimizes          plus a simple quadratic local model of       

around 



Examples

Gradient method:

Gradient projection method:

Iterative soft-thresholding: 



-Trick for     -norm

Variational form of the     -norm

Alternating minimization

 For    , closed-form solution

 For w, weighted squared     -norm regularized problem

 Caveat: lack of continuity around 



QP Formulation

For the special case with square loss

 is equivalent to (                         )

 generic toolboxes apply, but normally very slow! 



Piecewise linear solution paths

Lasso:



More on Piecewise Linearity 

The general regularized loss minimization problem

Piecewise linearity: 

 If

 s.t:

Sufficient conditions for piecewise linearity

 is quadratic or piecewise quadratic as a function of w

 is piecewise linear in w

[Rosset and Zhu: Piecewise Linear Regularized Solution Paths, Annals of Stats., 2007]



Comparison on Algorithms for Lasso

SG: sub-gradient descent

Ista: simple proximal methods

Fista: accelerated version of Ista

Re-L2: reweighted-least square

CP: cone programming

QP: quadratic programming

Lars: least angle regression

CD: coordinate descent



Alternative sparse methods 

– Greedy methods

Forward selection

Forward-backward selection

Non-convex method

 Harder to analyze

 Simpler to implement

 Problems of stability

Positive theoretical results (Zhang, 2009, 2008a)

 Similar sufficient conditions as for the Lasso



Simulation results

i.i.d. Gaussian design matrix, k = 4, n = 64, p ∈ [2, 256], 

SNR = 1

Note stability to non-sparsity and variability



Summary -- -norm Regularization

Leads to non-smooth optimization

 analysis through directional derivatives or subgradients

 optimization may or may not take advantage of sparsity

Allows high-dimensional inference

Interesting problems:

 Stable variable selection

 Weaker sufficient conditions (for weaker results)

 Estimation of regularization parameter (all bounds depend on 
the unknown noise variance σ2)



Extensions

Sparse methods are not limited to the square loss

 logistic loss: algorithms (Beck and Teboulle, 2009) and theory (Van 
De Geer, 2008; Bach, 2009)

Sparse methods are not limited to supervised learning

 Learning the structure of Gaussian graphical models (Meinshausen
and Buhlmann, 2006; Banerjee et al., 2008)

 Sparsity on matrices

Sparse methods are not limited to variable selection in a linear 
model

 Kernel learning (Bach et al., 2008)



Extensions

norm



Regularization with Groups of Variables

Assume                    is partitioned into m groups

Regularization: 

Induces groupwise sparsity

 Some groups entirely set to zero

 No zeros within group 



Regularization with Groups of Variables

E.g.: 



Group Lasso

Opt. problem:

Optimal condition?

 Proposition: w is optimal iff

 is the number of features in group j.

Coordinate descent algorithm can be used to solve it.



Sparse Group Lasso

Opt. Problem:

 the single group case:

Lasso

Sparse Group Lasso

Group Lasso



Sparsity for Matrices 



Learning on Matrices 

– Collaborative Filtering

Given N movies and M customers

Predict the rating of customer i for movie j

Training data:             incomplete matrix that describes the 

known ratings of some customers for some movies

Goal: complete the matrix



Learning on Matrices 

– Multivariate Regression/Classification

Multivariate linear regression

Multiclass linear classification

 where                           and     is the loss, e.g., logistic loss



Learning with Matrices 

– Multi-task Learning 

K prediction tasks on the same covariates

 Each model parameterized by 

 Empirical risks:

 All the parameters form a matrix

Many applications:

 Multi-category classification (one task per class)



Example – Image Denoising

Simultaneously denoise all patches of a given image

Example from Mairal et al. (2009)



Two types of sparsity of matrices 

Type 1 of sparsity: 

 Directly on the elements 

Many elements are zeros Many rows or columns are zeros



Two types of sparsity of matrices 

Type 2 of sparsity: 

 Through a factorization

 Low-rank sparsity: m is small

 Sparse decomposition:  U sparse



Type 1: Joint Variable Selection in MTL

Parameters for all the K tasks

Select all variables that are relevant to at least one task

 which regularizer? 



Type 2: Rank constraints and sparsity of 

the spectrum

Given a matrix 

 Singular value decomposition (SVD):

where      and     are orthogonal matrices;               are eigenvalues

 The rank of M is: 

 Rank of M is the minimum size m of all factorizations

Rank constrained learning



Low-rank via Factorization

Reduced-rank multivariate regression

 Well studied (Anderson, 1951; Izenman, 1975; Reinsel and Velu, 
1998)

 Is solved directly using the SVD (by OLS + SVD + projection)

General formulation

 Still non-convex but convex w.r.t. U and V separately

 Optimization by alternating procedures



Trace-norm Relaxation 

With SVD

 0-norm can be relaxed by 1-norm

 This is the trace norm, denoted by 

Trace-norm regularized learning

 Convex problem

 Can be solved with: proximal methods; Iterative re-weighted 

Least-squares; etc



Trace-norm and Collaborative Filtering

CF as matrix completion (users as rows; items as columns)

Find a low-rank matrix to reconstruct noisy observations

 Semi-definite program (Fazel et al., 2001)

 Max-margin approaches to CF (Srebro et al., 2005)

 High-dimensional inference fro noisy matrix completion (Srebro et al., 
2005; Candes & Plan, 2009)

 May recover entire matrix from slightly more entries than the 
minimum of the two dimensions 



Graphical Lasso

aka: sparse inverse covariance estimation

Gaussian graphical models

 A set of random variables

 The joint distribution is multivariate Gaussian

Proposition (sparse structure): 

 If the ij-th element of         is zero, then        and      are 

conditionally independent, i.e., no direct edge



Gaussian Random Fields

An example



Another example

How to estimate this MRF?

What if p >> n?

 MLE doesn’t exist in general!

 What about only learning a “sparse” graphical model?
 This is possible when s=o(n)

 Very often it is the structure of the GM that is more interesting …



Graphical Lasso

aka: sparse inverse covariance estimation

Sparse learning problem:

 Let 

Various algorithms:

 Banerjee et al. (2007): block coordinate descent

 Friedman et al. (2008): graphical lasso

 …



Sparse Learning of General Graphs

Local methods

 Sparse-norm regularized logistic regression + aggregation

 See (Wainwright et al., 2006)

Global methods

 Sparse-norm regularized MLE

 See (Lee et al., 2006; Zhu et al., 2010; etc. )

Wainwright et al: High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression

Lee et al: Efficient structure learning of Markov networks using ℓ1-regularization

Zhu et al: Grafting-Light:  Fast, Incremental Feature Selection and Structure Learning of MRFs



Graphical Regression



Graphical Regression



Graphical Regression



Consistency

Theorem: for the graphical regression algorithm, under 

certain verifiable conditions (omitted here for simplicity):



Dictionary Learning



Learning with pre-defined basis functions

-- generalized linear models

A mapping function

Doing linear regression in the mapped space 



Fixed Basis Functions

Given a set of basis functions

 E.g. 1:

 E.g. 2:



Dictionary Learning

Goal: 

 learn the basis functions from data



Parametric Basis Functions

Neural networks to learn a parameterized mapping function

E.g., a two-layer feedforward neural networks 

[Figure by Neal]



PCA: minimum error formulation

A set of complete orthonormal basis

We consider a low-dimensional approximation

The best approximation is to minimize the error



Issues with PCA

Principal components calculated on 8x8 image patches

• Not localized

• Not resemble cortical receptive 

fields

• Not suitable for images with 

high order statistics

• PCA capture linear pairwise

statistics

• Suitable for Gaussian distributed 

data

[Olshausen & Field, Nature 1996]



Sparse Coding

Basic assumption 1: a linear superposition model

Basic assumption 2: nature images have ‘sparse structure’ 

(similar as minimum-entropy code)

[Olshausen & Field, Nature 1996]

an image basis function



Sparse Coding

Search for a sparse code is an optimization problem:

 the L1-norm is a common choice

Solve the problems – alternating minimization

 For each image, solve for     as a sparse learning problem

 Update dictionary using gradient descent 

[Olshausen & Field, Nature 1996]



Sparse Coding

Basis learned on 16 x 16 natural scene image patches

• Localized

• Oriented

• Selective to spatial 

scales

[Olshausen & Field, Nature 1996]



Nonnegative Matrix Factorization

Matrix factorization

 Example losses:

Non-negativity loss:

[Lee & Seung, Nature 1999]



Nonnegative Matrix Factorization

Sparse basis and sparse coefficients for images:

[Lee & Seung, Nature 1999]



Nonnegative Matrix Factorization

Eigenfaces and non-sparse coefficients by PCA

 Positive and negative combinations

[Lee & Seung, Nature 1999]



Nonnegative Matrix Factorization

NMF for text documents with bag-of-word counts

The same coefficient vector to reconstruct all word counts in 

a document 



Nonnegative Matrix Factorization

NMF for text documents with bag-of-word counts

[Lee & Seung, Nature 1999]



Topic Modeling – projection view 

dirty, bad, small, nasty, poor, 

manager, called, rude, awful

great, good, gentle, beautiful, 

lovely, fantastic, friendly, fresh, 

Topic #1 Topic #2

Fantastic Hotel in beautiful Krabi. We felt pampered by 

the gentle and caring staff. The turndown service each 

evening maintains the very high standard. A blissful sleep 

in the most comfortable beds. The food is of a extremely 

high quality with fantastic fresh and vibrant tastes.

The room was dirty and smelled awful. The wallpaper 

was dirty and nasty. The hallway smelled awful as did the 

water. The price was awful 100.00 to stay in such a dirty

room. Just awful. I would not recommend this hotel to an 

enemy.

doc1

doc2

Dictionary Learning

…

…

spanned 

topical subspace

doc1

doc2

projection under 

some measure

Topical Projection

oTopical subspace is a simplex

o Projection under KL-divergence

 Probabilistic topic models:



Probabilistic Topic Models – restrictions
Ineffective in controlling posterior sparsity by using priors, e.g., 
Dirichlet prior in LDA (Zhu & Xing, UAI 2011):

Restricted to MLE when considering supervised side information;

Hard in inference due to a normalized likelihood model when 
considering discrete side information (e.g., category labels or features)

weak smoothing:

sparse but worse

predict accuracy

strong smoothing: 

improved prediction, 

but non-sparse



Sparse Topical Coding (STC)

Topical bases:

Hierarchical coding:
 word code s – encode word counts under a loss:

 document code     – an aggregation of word codes

Nonnegative hierarchical sparse coding (with dictionary learning)

A Non-probabilistic Topic Model

∊

f

f

f
f



Sparse Topical Coding (STC)
A Projection View

(unnormalized)  KL-divergence for log-Poisson loss

Projection is done under Regularization!



Experiments:

Sparse Topical Coding

Data Sets：
 20 Newsgroups

 Documents from 20 categories

 ~ 20,000 documents in each group

 Remove stop word as listed in UMASS Mallet

[Zhu & Xing, UAI 2011; Zhang & Zhu, WWW2013]



Prediction Accuracy on 20Newsgroups

gaussSTC: uses L2-norm regularizor on word and doc codes

NMF: non-negative matrix factorization

regLDA: LDA model using entropic regularizer on topic assignment distributions

MedLDA: max-margin supervised LDA (Zhu et al., 2012)

DiscLDA: discriminative LDA (Simon et al., 2008)



Sparsity of Word Codes on 20Newsgroups

Sparsity ratio: the percentage of zero elements on the word 

codes



Sparse Word Codes on 20Newsgroups
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Software:
 SPAMS (SPArse Modeling Software): 

http://www.di.ens.fr/willow/SPAMS/

http://www.di.ens.fr/willow/SPAMS/


Additional reading materials

Chap. 3 of Elements of Statistical Learning (2nd Edition)

 http://statweb.stanford.edu/~tibs/ElemStatLearn/

http://statweb.stanford.edu/~tibs/ElemStatLearn/


Additional reading materials



Additional reading materials


